Ch. 6 Gases

Return to TOC

Gas Laws

T\textcolor{#EE4266}{T}: temperature (Kelvin, Kelvin=Celcius+273.15\text{Kelvin} = \text{Celcius} + 273.15)
P\textcolor{#EE4266}{P}: pressure
V\textcolor{#EE4266}{V}: volume
n\textcolor{#EE4266}{n}: moles
R\textcolor{#EE4266}{R}: gas constant
R=8.314 JmolK=0.08206 LatmmolK=62.36 LtorrmolKR=\pu{8.314 J//mol K}=\pu{0.08206 L atm//mol K}=\pu{62.36 L torr// mol K}

Boyle's Law (1660)

P0V0=P1V1P_0 V_0=P_1 V_1

Charle's Law (1787)

V0T0=V1T1\frac{V_0}{T_0}=\frac{V_1}{T_1}

Gay-Lussac's Law (c. 1787)

P0T0=P1T1\frac{P_0}{T_0}=\frac{P_1}{T_1}

Avogadro's Principle

n0V0=n1V1\frac{n_0}{V_0}=\frac{n_1}{V_1}

Ideal Gas Law

PV=nRTPV=nRT

Example

A 12.0 L\pu{12.0 L} sample of helium gas at STP is heated to 100 °C\pu{100\degree C} and pressurized to 3.00 atm\pu{3.00 atm}. What is the new volume of helium?


We know V0=12.0 LV_0=\pu{12.0 L}, P0=1.00 atmP_0=\pu{1.00 atm}, P1=3.00 atmP_1=\pu{3.00 atm}, T0=273 KT_0=\pu{273 K}, T1=373 KT_1=\pu{373 K}, and nn and RR remain unchanged.
So, from the ideal gas law,
P0V0T0=nR=P1V1T1\frac{P_0 V_0}{T_0}=nR=\frac{P_1 V_1}{T_1}
Plugging in,
1.0012.0273=3.00V1373\frac{1.00\cdot12.0}{273}=\frac{3.00\cdot V_1}{373}
V1=5.47V_1=5.47, so the new volume is 5.47 L\pu{5.47 L}

Density

From n=grams of gasmolar massn=\frac{\text{grams of gas}}{\text{molar mass}} (look at the units), the density can be found from the ideal gas law (remember density=gV\text{density}=\frac{g}{V}):
PV=gmolar massRTP(molar mass)=gVRTPV=\frac{g}{\text{molar mass}}RT\rightarrow P(\text{molar mass})=\frac{g}{V}RT


Kinetic Molar Theory

  1. gases consist of atoms/molecules in continuous, random motion
  2. collisions between these atoms/molecules are elastic
  3. the volume occupied is negligibly small
  4. attractive/repulsive forces are negligible
  5. average kinetic energy is directly proportional to the Kelvin temperature of the gas

The highlighted two define an ideal gas

Example

Helium leaks through a hole at a rate of 3.22105 mol/s\pu{3.22*10^-5 mol/s}.
How fast will oxygen effuse under the same conditions?


Helium has mass m1=4m_1=4 and effusion rate v1=3.22105 mol/sv_1=\pu{3.22*10^-5 mol/s}
Oxygen has mass m2=32m_2=32.
Plugging this in, we have
432=v23.22105 mol/sv2=1.14105 mol/s\sqrt{\frac{4}{32}}=\frac{v_2}{\pu{3.22*10^-5 mol/s}}\rightarrow v_2=\pu{1.14*10^-5 mol/s}
So oxygen will effuse at a rate of 1.14105 mol/s\pu{1.14*10^-5 mol/s}


Real Gas

Volume and attractive/repulsive forces stop being negliglbe under high pressures or low temperatures, so they deviate from the ideal gas law


Dalton's Law of Partial Pressures

When gases are mixed, they tend to act independently
So, total pressure is a combiniation of all gas pressures
Ptotal=P1+P2+P_{\text{total}}=P_1+P_2+\cdots
Each PkP_k is the partial pressure of a gas, and is proportional to number of moles by the ideal gas law